|
In rigid analysis, a branch of mathematics, the Tate algebra over a complete ultrametric field ''k'', named for John Tate, is the subring ''R'' of the formal power series ring consisting of such that as . The maximal spectrum of ''R'' is then a rigid-analytic space. Define the Gauss norm of in ''R'' by : This makes ''R'' a Banach ''k''-algebra. == References == *http://math.stanford.edu/~conrad/papers/aws.pdf *http://www-math.mit.edu/~kedlaya/18.727/tate-algebras.pdf 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Tate algebra」の詳細全文を読む スポンサード リンク
|